首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3024篇
  免费   38篇
  国内免费   66篇
  2023年   49篇
  2022年   40篇
  2021年   58篇
  2020年   72篇
  2019年   117篇
  2018年   147篇
  2017年   66篇
  2016年   48篇
  2015年   55篇
  2014年   254篇
  2013年   336篇
  2012年   152篇
  2011年   225篇
  2010年   152篇
  2009年   143篇
  2008年   156篇
  2007年   168篇
  2006年   125篇
  2005年   143篇
  2004年   85篇
  2003年   77篇
  2002年   63篇
  2001年   10篇
  2000年   19篇
  1999年   8篇
  1998年   14篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   12篇
  1988年   4篇
  1987年   4篇
  1985年   18篇
  1984年   39篇
  1983年   29篇
  1982年   37篇
  1981年   21篇
  1980年   23篇
  1979年   24篇
  1978年   17篇
  1977年   11篇
  1976年   19篇
  1975年   7篇
  1974年   14篇
  1973年   9篇
  1972年   2篇
排序方式: 共有3128条查询结果,搜索用时 64 毫秒
21.
Free fatty acid receptor 1 (FFAR1) is a member of a previously characterized cluster of orphan G protein-coupled receptors (GPCRs). Later, this orphan receptor was identified as a target of medium- to long-chain free fatty acids in β-cells of the pancreas. Administration of FFAR1 agonists has been proved to potentiate glucose-stimulated insulin secretion from pancreatic β-cells. It was reported that some thiazolidinediones (TZDs), the best studied PPARγ agonists, are also able to stimulate FFAR1 in a dose-dependent manner. In the present study, a homology model of the human FFAR1 was constructed and inserted into a pre-equilibrated DPPC/TIP3P membrane system. This system was then simulated for 20 ns in complex with the FFAR1 agonist GW9085, as well as rosiglitazone and pioglitazone. We noticed that the salt bridge between Glu172 and Arg258 and the H bond between Glu145 and His153 could be responsible for the stabilization of the receptor in the inactive state. Moreover, we described for the first time the binding mode of TZDs in the binding site of FFAR1. The thiazolidinedione head forms a hydrogen bonding network with the critical polar residues in the binding site, Arg258 and Asn244, while the rest of the molecule is embedded into the receptor hydrophobic pocket. Based on this modeling study, we arrived at a proposal of the pharmacophore required for binding to both PPARγ and FFAR1. Insights gained from this investigation should provide future directions for the design of novel dual acting antidiabetic agents.  相似文献   
22.
Endocannabinoids modulate multiple behaviors, including learning and memory. We show that the endocannabinoid anandamide (AEA) can alter neuronal cell function both through its established role in activation of the G-protein-coupled receptor CB1, and by serving as a precursor for a potent agonist of the nuclear receptor PPARβ/δ, in turn up-regulating multiple cognition-associated genes. We show further that the fatty acid-binding protein FABP5 controls both of these functions in vivo. FABP5 both promotes the hydrolysis of AEA into arachidonic acid and thus reduces brain endocannabinoid levels, and directly shuttles arachidonic acid to the nucleus where it delivers it to PPARβ/δ, enabling its activation. In accordance, ablation of FABP5 in mice results in excess accumulation of AEA, abolishes PPARβ/δ activation in the brain, and markedly impairs hippocampus-based learning and memory. The data indicate that, by controlling anandamide disposition and activities, FABP5 plays a key role in regulating hippocampal cognitive function.  相似文献   
23.
Liver plasma membranes prepared from genetically diabetic (db/db) mice expressed levels of Gi α-2, Gi α-3 and G-protein β-subunits that were reduced by some 75, 63 and 73% compared with levels seen in membranes from lean animals. In contrast, there were no significant differences in the expression of the 42 and 45 kDa forms of Gs α-subunits. Pertussis toxin-catalysed ADP-ribosylation of membranes from lean animals identified a single 41 kDa band whose labelling was reduced by some 86% in membranes from diabetic animals. Cholera toxin-catalysed ADP-ribosylation identified two forms of Gs α-subunits whose labelling was about 4-fold greater in membranes from diabetic animals compared with those from lean animals. Maximal stimulations of adenylyl cyclase activity by forskolin (100 μM), GTP (100 μM), p[NH]ppG (100 μM), NaF (10 mM) and glucagon (10 μM) were similar in membranes from lean and diabetic animals, whereas stimulation by isoprenaline (100 μM) was lower by about 22%. Lower concentrations (EC50-60 nM) of p[NH]ppG were needed to activate adenylyl cyclase in membranes from diabetic animals compared to those from lean animals (EC50-158 nM). As well as causing activation, p[NH]ppG was capable of eliciting a pertussis toxin-sensitive inhibitory effect upon forskolin-stimulated adenylyl cyclase activity in membranes from both lean and diabetic animals. However, maximal inhibition of adenylyl cyclase activity in membranes from diabetic animals was reduced to around 60% of that found using membranes from lean animals. Pertussis toxin-treatment in vivo enhanced maximal stimulation of adenylyl cyclase by glucagon, isoprenaline and p[NH]ppG through a process suggested to be mediated by the abolition of functional Gi activity. The lower levels of expression of G-protein β-subunits, in membranes from diabetic compared with lean animals, is suggested to perturb the equilibria between holomeric and dissociated G-protein subunits. We suggest that this may explain both the enhanced sensitivity of adenylyl cyclase to stimulation by p[NH]ppG in membranes from diabetic animals and the altered ability of pertussis and cholera toxins to catalyse the ADP-ribosylation of G-proteins in membranes from these two animals.  相似文献   
24.
APX (EC, 1.11.1.11) has a key role in scavenging ROS and in protecting cells against their toxic effects in algae and higher plants. A cDNA encoding a peroxisomal ascorbate peroxidase, Am-pAPX1, was isolated from salt stressed leaves of Avicennia marina (Forsk.) Vierh. by EST library screening and its expression in the context of various environmental stresses was investigated. Am-pAPX1 contains an ORF of 286 amino acids coding for a 31.4kDa protein. The C-terminal region of the Am-pAPX1 ORF has a putative transmembrane domain and a peroxisomal targeting signal (RKKMK), suggesting peroxisomal localization. The peroxisomal localization of Am-pAPX1 was confirmed by stable transformation of the GFP-(Ala)(10)-Am-pAPX1 fusion in tobacco. RNA blot analysis revealed that Am-pAPX1 is expressed in response to salinity (NaCl) and oxidative stress (high intensity light, hydrogen peroxide application and excess iron). The isolated genomic clone of Am-pAPX1 was found to contain nine exons. A fragment of 1616bp corresponding to the 5' upstream region of Am-pAPX1 was isolated by TAIL-PCR. In silico analysis of this sequence reveals the presence of putative light and abiotic stress regulatory elements.  相似文献   
25.
Three forms of the normal human plasma fibrinogen γ-chain which differ in molecular weight have been purified. Plasma fibrinogen was separated by ion exchange chromatography on DEAE-Sephacel into three populations of molecules, each with a unique γ-chain composition. Following reduction and S-carboxymethylation, the fibrinogen polypeptide chains in each chromatographic peak were separated by ion exchange chromatography on DEAE-Sephacel and identified following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Aα, Bβ and smallest γ-chain (γ50) eluted at progressively higher ionic strengths, but the elution positions of Aα, Bβ and γ50 chains were identifcal for fibrinogen from each of the three different chromatographic fractions. The unique γ chain of fibrinogen in the second chromatographic peak (γ55) eluted at an ionic strength higher than that of the γ50 chain, while the largest γ-chain (γ57.5), which was contained only in the third chromatographic peak of fibrinogen, eluted at the highest ionic strength. The higher ionic strengths needed to elute fibrinogen in the second and third peaks was paralleled by the higher ionic strengths needed to elute the γ-chains unique to them, suggesting that the γ-chain composition of the three fibrinogen fractions accounted for their differential binding to the ion exchange resin. Following desialation with neuraminidase, the differences in electrophoretic mobilities between the three γ-chain forms was maintained, indicating that differential migration on SDS-polyacrylamide gel electrophoresis was not due to variation in sialic acid content.  相似文献   
26.
A common intracellular signal activating polymorphonuclear leukocytes (PMN) in inflammation is a change in cytosolic calcium concentration. Previously, we have shown that interferon-γ (IFN-γ) induces transient calcium signals in PMN, but only after intracellular calcium store depletion. Using a digital imaging system, we show that adhesion of PMN is critical for IFN-γ-induced calcium signals, and with PMN attached to the optimal coating, the calcium signals are evoked even in presence of extracellular calcium, that is, non-depleted calcium stores. Adhesion to fibronectin, pure or extracted from plasma by gelatin, improved the IFN-γ responses compared with serum, plasma, or vitronectin coats. In accordance with previous observations, IFN-γ-induced calcium signals in fibronectin adherent cells were totally abolished by the G-protein inhibitor pertussis toxin and were also inhibited by the sphingosine kinase inhibitors dimethylsphingosine (DMS) and N-acetylsphingosine (N-Ac-Sp). PMN contact with fibronectin alone, measured in cells sedimenting onto a fibronectin-coated surface or by addition of fibronectin to glass-adherent cells, evoked transient calcium signals. However, PMN in suspension did not respond to the addition of fibronectin or arginine-glycine-aspartate (RGD). The fibronectin-induced calcium signals were also clearly depressed by pertussis toxin and by the sphingosine kinase inhibitors DMS, dihydrosphingosine (DHS), and N-Ac-Sp. When the product of sphingosine kinase activity, sphingosine I-phosphate (S1-P), was added to the cells, similar calcium signals were induced, which were dependent on a pertussis toxin-sensitive G-protein activity. Finally, addition of S1-P to the cells prior to stimulation with IFN-γ partly mimicked the priming effect of fibronectin. In conclusion, fibronectin contact evokes by itself a calcium signal in PMN and further promotes calcium signaling by IFN-γ. We suggest that fibronectin might activate sphingosine kinase, and that the sphingosine 1-phosphate thereby generated induces a calcium signal via a G-protein-dependent mechanism. Apparently, sphingosine kinase activity is also involved in IFN-γ induced calcium signals.  相似文献   
27.
Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied.After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf's eosinophil Counting, The levels of IL-4, −5, −13, −25, –33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done.BALf's eosinophils, the levels of IL-4, −5, −13, −25, –33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4.MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.  相似文献   
28.
According Global Cancer Statistics 2020 GLOBOCAN estimates female breast cancer was found as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), and the fourth leading cause (6.9%) of cancer death among women worldwide. Identification of new diagnostic marker sharply characterize the tumor feature is intensive need. The present work was performed to investigate the involvement of the INF-γ + 874 T/A gene polymorphism in different breast cancer prognostic factors. Polymorphism detection analysis was performed on 163 subjects from breast cancer patients, 79 with inflamed cells of breast patients and 144 controls. The gene polymorphism was detected using the amplification refractory mutation system- polymerase chain reaction method (ARMS-PCR). The distribution of INF-γ T + 874A gene polymorphism shows strong significant association between INF-γ + 874 T/A genotypes TT in BC patients (ORTT: 6.41 [95% CI = 2.72–15.1] P < 0.0001) as well as strong significant association regarding T allele (ORT: 1.99 [95% CI = 1.43–2.76] P < 0.0001) when compared to the healthy control. In ICB group the strong association was noted with INF-γ + 874 T/A genotypes AT genotype (ORAT: 2.28 [95% CI = 1.22–4.29] P = 0.007). From the different histological BC hormonal markers the human epidermal growth factor receptor 2 (HER2) was showing significant association in INF-γ + 874 T/A genotypes TT (P = 0.03) and recessive model (TT versus AA + AT P = 0.03). Concerning different BC prognostic models, the poor prognostic one of luminal B, (ER+ve PR+ve Her2+ve) show significant association in the host INF-γ + 874 T/A genotype (TT, P = 0.03) and recessive model (TT versus AA + AT P = 0.02) when compared to the good prognostic hormonal status luminal A model, (ER+ve PR+ve Her2-ve). It seems that this is the first study that interested in correlate the INF-γ + 874 T/A gene polymorphisms in Egyptian BC patients. T allele, TT genotype and recessive model of the INF-γ + 874 T/A gene variants were documented as risk factors for BC pathogenesis. It may be used as practical biomarker to guide the BC carcinogenesis and risk process.  相似文献   
29.
As new environmentally friendly and effective antifungal agents are deeply needed, efficient ecofriendly strategies were designed to access two series of compounds inspired from natural γ-lactams. Designed compounds were fully characterized and evaluated as antifungal candidates against Zymoseptoria tritici, the main pathogen on wheat crops. The targeted derivatives were prepared from natural resources using green solvents, simple procedures, and limited purification steps. These bio-inspired compounds revealed as good candidates for further development of efficient crop protection products. Indeed, the HIT compounds exhibited IC50 around 1 μg/mL and were more active than the references tebuconazole and bixafen towards some multidrug-resistant strains. Two dozen of derivatives have been obtained for each series and allowed to establish early structure-activity relationships useful for the development of next generation of γ-lactam derivatives with improved efficacy.  相似文献   
30.
Four fractions with ribonuclease activity have been isolated from tea leaves by DEAE-cellulose column chromatography and designated as RNase Tf-1, RNase Tf-2, RNase Tf-3 and RNase Tf-4. The bigger fractions of both RNase Tf-3 and RNase Tf-4 have been partially purified by Sephadex G-100 column chromatography.

RNase Tf-3 and RNase Tf-4 were respectively found to have their optimum pH at 4.75 and 4.9 and molecular weights of approximately 13,000 and 16,000, as determined by gel filtration. Both enzymes were inhibited by Cu2+ and Hg2+, and inactivated by heating at over 50°C. By addition of yeast RNA to the two enzymes, however, their thermostabilities increased. The activities of the enzymes were stable in a pH range of 4.5 to 6.5. Like other plant RNases, RNase Tf-3 and RNase Tf-4 appeared to have no preference for base in RNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号